Exoprep
On a
cos
x
=
∑
k
=
0
+
∞
(
−
1
)
k
k
!
x
k
\cos x = \sum_{k = 0}^{+\infin} \frac{(-1)^k}{k!}x^k
cos
x
=
∑
k
=
0
+
∞
k
!
(
−
1
)
k
x
k
ou un truc du genre
1.
This is a subquestion statement
1.1.
This is a subquestion
To solve the equation, start by subtracting
5
5
5
from both sides and then divide by
3
3
3
.
The solution to the equation is
x
=
4
x = 4
x
=
4
Ceci est une explication
e
x
=
1
e^x = 1
e
x
=
1
2.
Question
Indication
Réponse
3.
Calculate the value of the expression:
2
5
×
3
8
\frac{2}{5} \times \frac{3}{8}
5
2
×
8
3
To solve the equation, start by subtracting
5
5
5
from both sides and then divide by
3
3
3
.
The solution to the equation is
x
=
4
x = 4
x
=
4
Ajouter votre explicationvxcvxcv
Ajouter votre explicationx
On a
cos
x
=
∑
k
=
0
+
∞
(
−
1
)
k
k
!
x
k
\cos x = \sum_{k = 0}^{+\infin} \frac{(-1)^k}{k!}x^k
cos
x
=
k
=
0
∑
+
∞
k
!
(
−
1
)
k
x
k
ou un truc du genre
Exoprep
Email:
ic@ic.ic
Deconnexion
Accueil
Favoris
Historique
Cours
Exercices & Sujets
Ajouter un exercice
A propos
Fonctionnalités