On a cosx=∑k=0+∞(−1)kk!xk\cos x = \sum_{k = 0}^{+\infin} \frac{(-1)^k}{k!}x^kcosx=∑k=0+∞k!(−1)kxk ou un truc du genre
This is a subquestion statement
This is a subquestion
To solve the equation, start by subtracting 555 from both sides and then divide by 333.
The solution to the equation is x=4x = 4x=4
Ceci est une explication ex=1e^x = 1ex=1
Question
Indication
Réponse
Calculate the value of the expression: 25×38\frac{2}{5} \times \frac{3}{8}52×83
Ajouter votre explicationvxcvxcv
Ajouter votre explicationx
On a cosx=∑k=0+∞(−1)kk!xk\cos x = \sum_{k = 0}^{+\infin} \frac{(-1)^k}{k!}x^kcosx=k=0∑+∞k!(−1)kxk ou un truc du genre
Ajouter