On a cosx=k=0+(1)kk!xk\cos x = \sum_{k = 0}^{+\infin} \frac{(-1)^k}{k!}x^k ou un truc du genre

  • Drag

    This is a subquestion statement

  • Drag

    This is a subquestion

    To solve the equation, start by subtracting 55 from both sides and then divide by 33.

    The solution to the equation is x=4x = 4

  • Drag

    Ceci est une explication ex=1e^x = 1

  • Drag

    Question

    Indication

    Réponse

  • Drag

    Calculate the value of the expression: 25×38\frac{2}{5} \times \frac{3}{8}

    To solve the equation, start by subtracting 55 from both sides and then divide by 33.

    The solution to the equation is x=4x = 4

  • Drag

    Ajouter votre explicationvxcvxcv

  • Drag

    Ajouter votre explicationx

  • Drag

    On a cosx=k=0+(1)kk!xk\cos x = \sum_{k = 0}^{+\infin} \frac{(-1)^k}{k!}x^k ou un truc du genre